Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless "nonfluorescent" chlorophyll catabolites.

نویسندگان

  • Michael Oberhuber
  • Joachim Berghold
  • Kathrin Breuker
  • Stefan Hortensteiner
  • Bernhard Krautler
چکیده

Senescent higher plants degrade their chlorophylls (Chls) to polar colorless tetrapyrrolic Chl catabolites, which accumulate in the vacuoles. In extracts from degreened leaves of the tree Cercidiphyllum japonicum an unpolar catabolite of this type was discovered. This tetrapyrrole was named Cj-NCC-2 and was found to be identical with the product of a stereoselective nonenzymatic isomerization of a "fluorescent" Chl catabolite. This (bio-mimetic) formation of the "nonfluorescent" catabolite Cj-NCC-2 took place readily at ambient temperature and at pH 4.9 in aqueous solution. The indicated nonenzymatic process is able to account for a crucial step during Chl breakdown in senescent higher plants. Once delivered to the acidic vacuoles, the fluorescent Chl catabolites are due to undergo a rapid, stereoselective isomerization to the ubiquitous nonfluorescent catabolites. The degradation of the Chl macrocycle is thus indicated to rely on just two known enzymes, one of which is senescence specific and cuts open the chlorin macroring. The two enzymes supply the fluorescent Chl catabolites, which are "programmed" to isomerize further rapidly in an acidic medium, as shown here. Indeed, only small amounts of the latter are temporarily observable during senescence in higher plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis.

Nonfluorescent chlorophyll catabolites (NCCs) were described as products of chlorophyll breakdown in Arabidopsis thaliana. NCCs are formyloxobilin-type catabolites derived from chlorophyll by oxygenolytic opening of the chlorin macrocycle. These linear tetrapyrroles are generated from their fluorescent chlorophyll catabolite (FCC) precursors by a nonenzymatic isomerization inside the vacuole of...

متن کامل

Chlorophyll Breakdown in Senescent Banana Leaves: Catabolism Reprogrammed for Biosynthesis of Persistent Blue Fluorescent Tetrapyrroles

Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll-derived bilin-type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll ca...

متن کامل

Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit

The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels,...

متن کامل

A Dioxobilane as Product of a Divergent Path of Chlorophyll Breakdown in Norway Maple**

Chlorophyll breakdown is a hallmark of leaf senescence and a major contributor to the emergence of the fall colors. Strikingly, essential pieces of the puzzle of this biological phenomenon have been solved only within the last two decades. A breakthrough was the identification and structure elucidation of a colorless tetrapyrrolic chlorophyll catabolite, thereafter named Hv-NCC-1. The further c...

متن کامل

Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction.

During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three fluorescent chl catabolites (FCCs) accumulate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 12  شماره 

صفحات  -

تاریخ انتشار 2003